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Abstract

We calculate the change in the density of states due to a biased

resonant tunneling structure. The maximum of the density of states near

resonance gets shifted towards low-energy side compared to the unbiased case.

as is the transmission coefficient, although the two need not be identical.

For the case of asymmetric barrier heights, the left-right symmetry of the

density of states is broken when the field is non-vanishing.
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In recent years scientists have become increasingly aware of the

importance of resonant tunneling structures (RTSs) in electronic and opto-

electronic device applications and their possible role in fundamental

1-5
advances. Therefore, many studies of static and dynamic aspects of

resonant tunneling structures have been undertaken. A common static quantity

of interest is the transmission coefficient T(E); a related physical quantity

is the width of the resonance peak, which is inversely proportional to the

lifetime of the resonant state. A second important static quantity is the

density of states, a knowledge of which is essential in understanding

transition probabilities, dielectric functions and absorption and luminescence

characteristics.

Recently the local density of states,

N(E,x) - S(E-E n ) on(x)I2  (I)

n

in a RTS has been obtained and analyzed in various limits. 6,7 Here E are the

energy eigenvalues of the system and 0n are the corresponding eigenstates.

The global density of states obtained by integrating Eq. (1) following Ref. 6

would be identically zero. We therefore follow a different scheme to

8
calculate the global density of 

states,

N(E) - S(E-E) (2)

n

In a big box of size L (L - ), the energy levels form a quasi-continuous

spectrum. Introduction of a structure inside the box changes the spacing

bc-,jen the levels and produces a change AN(E) in the global density of



states, which we calculate. In the neighborhood of a resonance, the changes

in the spacing of the energy levels produces a pronounced change in density of

states. If the resonances are sufficiently narrow, AN(E) and T(E) coincide;

however, for broad resonances this is not true.

For the sake of completeness, -e briefly review our method for obtaining
8

the density of states AN(E) for an unbiased RTS. For a flat box extending

from x - 0 to x - L, the density of states in k-space is N (k) - L/ir, where E0

- 2 k 2/(2m*) is the energy and m* the effective mass. Suppose now that the

RTS is placed in the middle of the box, at x - xI - L/2, thereby squeezing

more states into some energy region and depleting states in some other region.

Suppose that the energy eigenvalues of the system are obtained from the

condition D(k) - 0 where D(k) is a determinental function of the solutions to

the Schrodinger equacion (see Eq. (9) below). The change in density of states

associated with the n-th level having spacing Akn is

n

The spacing Ak is easily obtained by finding the roots of the eigenvalue

condition D(k) - 0 with the use of a Newton-Raphson method or any other

8
appropriate scheme. As the previous work in our group emphasized, the shifts

of the energy levels depend sensitively on the phase of the wave function at

the position where the structure is introduced (i.e., at x 1 L/2 in this

case). This phase dependence produces apparently irregular spacings of the

levels, and one has to calculate two "sub-densities" (since the RTS is in the

middle) in the manner indicated above and add the two to obtain the total

density. As expected, for a biased RTS, calculation of AN(k) and hence AN(E)



is more complicated, and the phase of the wave function in the neighborhood of

the strtcture has to be constantly adjusted (by changing the position xI to

x(E)) to get the sub-densities correctly. The position x at which the

biased RTS should be placed is obtained from the relation

k'x i - kx , (4)

2 2
where k - (2m*E/ x L/2 and k' - [2m*(E+V o)/ I Here V is the

0 o

potential drop across the double barrier structure and is taken to be 10 meV

throughout this work.

In Fig. I we show the geometry of the device. The RTS has an extension

X3 - aI + a 2 + d, where a and a 2 are the barrier widths and d is the well

width. The barrier heights are taken to be V and V The electric field in

the structure is uniform and is F - Vo/X 3. The electric potential at any

point x inside the structure is

F (x) - Vo(X1 -X)/X 3  
(5)

We label the regions of piecewise continuous potential profiles by integers.

from 0 to 4, as indicated in the figure, and solve the stationary-state

Schrodinger equation for the envelope function in the effective mass

approximation where we assume, for simplicity, the same m* - 0.067 m ee -

electron mass) throughout the structure. In region I, for example, the

Schrodinger equation is

d 2 /dx - (2m*/( 2)[VF(X) + (V1 -E)I O(x) - 0 (6)



5

This can be reduced to

d 2 (p)/dp 2  pi(p) - 0 (7)

whose solutions are the Airy functions, A [p(x)], and the complementary Airy

functions Bi(P(X)],

O(p) - AIA i(P) + BIBi(P) (8)

where A, and B are two arbitrary constants, p(x) - a(xl-x) + (V - E)o/Vo

2 1/3
and a - 2m*Vo/( 2 x3 )] The solutions in all the five regions can be

obtained in a similar fashion. The eigenvalue condition is the condition of

the vanishing of the wave function at x - L, so that

D(k) - A sink'(L-x2 ) + B4cosk'(L-x 2) - 0 , (9)

where x2 - -I + x1 , and A. and B, are obtained by demanding the usual

continuity of the wave function and its first derivative with respect to x

across the interfaces:

(A B4 ] -t (sinkxI kcoskx1 ] (10)

The 2 " 2 matrix M in the equation above is

A A A A
1  

A (LA *R) A _ 
1

- M34 (R)M 34 (L)M 23 (R)M 2 3 (L)M'12 (R)M 1 2 (L)M%1 (R) (1



The subscripts on the matrices indicate the two regions they connect, and L

and R stand, respectively, for the left and right sides of the interface.

Equations (3), (4), (10) and (11) enable us to obtain AN(E) for a biased

RTS, which can then be compared with the transmission coefficient T(E)

obtained in the usual way. We call the structure shown in Fig. 1 as a tilted

box with a structure (TBWS). We define a background potential profile called

the tiltzd box (TB) for which V - V 2 - 0 in Fig. 1. The difference in

density of states between TBWS and TB gives AN(E), which can be compared

directly with T(E).

Figures 2-4 show T(E) and AN(E) for a double barrier device of barrier

widths 50 A each and heights 200 meV each, and a well width of 100 A. Figures

2 and 3 show T(E) and AN(E) for the first two bound state resonances, whereas

Fig. 4 is for energies above the barrier energy. A comparison with the

unbiased case shows that both T(E) and AN(E) get shifted to lower energies

than the corresponding unbiased case.

For the sake of completeness, we comment on the physical origin of the

energy shift of transmission resonances due to the electric field. The

electron resonance energy is a compromise between the increased kinetic energy

due to a spatially-varying potential and the lowering of the potential energy

brought about by the field. The electron wave function wiggles a lot to

accommodate the increased kinetic energy and lowers its total energy. Th e

electron resonance energy decreases linearly for both the ground state and the

first excited state for the electric field considered by us. The magnitude of

the rate of decrease with the field is larger for the ground state than the

first excited state.



Finally, in Fig. 5 we show our results for an asymmetric double barrier

structure without a field (V = 0) and with a field (V = 10 meV). The dot-
0 O

dashed curves in Fig. (7a) and (7c) represent the field-free case, and these

have left-right symmetry with respect to the interchange of the two barriers.

In the presence of a field, this symmetry is broken. The dashed lines

correspond to the case V I - 100 meV and V 2 - 200 meV, whereas the dotted line

corresponds to the permuted case V - 200 meV and V 2 - 100 meV. This

asymmetry is important in calculating tunneling currents and transition

probabilities.
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Figure Captions

i. netrv of the tilted box with a structure (TBWS). The box extends from

x - 0 to x - L (we take L to be of the order of 1.5 x 106 to 1.0 x 10 6

in this work) whereas the structure extends from x = x t:o x - X

where x 3 - a I + a 2 + d. T'ie external electric field is F - Vo/x 3 . 'We

00cake V 0- 10 meV throughout this paper. The zero of the energy for this

and the following figures (Figs. 2-5) is taken to be the bottom of the

left-most part of the box.

2. Transmission coefficient T(E) and density of states AN(E) for a symmetric

double barrier structure (DBS) in an anplied electric field. The barriers

are each 50 A wide and 200 meV high, and the well is 100 A wide. The

energy range shown is in the neighborhood of the first resonance energy.

The middle panel shows AN(E) for a tilted box (TB), (solid curve) and a

TBWS (dashed curve).

3. T(E) and AN(E) as in Fig. 2, but for the second resonant state.

4. T(E) and AN(E) as in Fig. 2, but for the energies above the barrier

energy.

5. Transmission coefficient T(E) and density of states N(E) for an

asymmetric DBS. The barriers and the well are each 50 , wide, and the

barrier heights are 100 meV and 200 meV. The dash-dotted curves show T(E)

and AN(E) without the field, and these curves exhibit left and right

degeneracies. The dotted curves are for V I - 200 meV and V 2 - 100 meV,

whereas the dashed curves are for V I - 100 meV and V2 - 200 meV. The

solid curve in the middle panel is for a tilted box, as explained in the

caption to Fig. 2.
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